Forscherteams aus Bayreuth und Würzburg gelingt Durchbruch: Biotinte basierend auf Spinnenseide

Spinnenseide eignet sich hervorragend als Material für Biotinte, mit der gewebeähnliche Strukturen im dreidimensionalen Druck hergestellt werden können. Die lebenden Zellen bleiben funktionstüchtig

Bild„Biofabrikation“ ist der Name eines jungen Forschungsgebiets, das weltweit mit zunehmender Intensität bearbeitet wird. Es geht dabei insbesondere um die Produktion von gewebeähnlich aufgebauten Strukturen durch 3D-Drucktechniken. Solche Strukturen, wie sie für die Wiederherstellung von beschädigtem Gewebe benötigt werden, setzen sich aus zwei Bestandteilen zusammen: aus einem porösen Gerüst und aus lebenden Zellen, die sich in den Zwischenräumen dieses Gerüsts befinden.

Exzellente Eigenschaften der Spinnenseide ermöglichen einfache 3D-Verfahren

Bisher hat man derartige Strukturen hauptsächlich in konsekutiven Verfahren entwickelt. Dabei wird zunächst das Gerüst mit den gewünschten molekularen Strukturen vorgefertigt und anschließend mit lebenden Zellen „beladen“. Bei der Optimierung der Materialien, die als Gerüstmaterialien zum Einsatz kommen, konnten bisher deutliche Erfolge erzielt werden. Dennoch sind diese Verfahren nur eingeschränkt tauglich, um Zellen in den Gerüsten gezielt gewebeartig anzuordnen.

Erheblich vorteilhafter für solche medizinischen Anwendungen sind dreidimensionale Druckverfahren, bei denen Biotinte – bestehend aus den Bausteinen des Gerüsts und aus lebenden Zellen – zum Einsatz kommt. Bei der Entwicklung einer neuen Biotinte auf der Basis von Spinnenseide ist dem Forschungsteam in Bayreuth und Würzburg nun ein entscheidender Durchbruch gelungen. Denn Spinnenseide hat keine zelltoxischen Wirkungen, wird nur langsam abgebaut und löst keine Immunreaktionen aus. Vor allem aber konnte das Forschungsteam in Bayreuth und Würzburg nachweisen, dass eine Biotinte auf der Basis von Spinnenseide allen anderen bisher getesteten Materialien überlegen ist. Ein Gel, in dem Spinnenseidenmoleküle und lebende Zellen gemischt sind, „fließt“ im Druckkopf des 3D-Druckers, so dass auch feine Gerüststrukturen auf einer Oberfläche aufgetragen werden können; hier aber verfestigt sich das Gel sofort. Der Grund für diesen blitzschnellen Wechsel von „flüssig“ zu „fest“ liegt darin, dass sich die Spinnenseidenmoleküle in ihrer Struktur umlagern – ein Mechanismus, den auch die Spinne bei der Faserproduktion nutzt.

Neue Perspektiven für die Wiederherstellung von Herzmuskel-, Nerven- oder Hautgewebe

Als lebende Zellen wurden zunächst Fibroblasten von Mäusen und anschließend – mit gleichbleibendem Erfolg – menschliche Zellen verwendet. „Die bisher erzielten Forschungsergebnisse machen uns deshalb zuversichtlich, dass sich durch den Einsatz von Spinnenseide als Biotinte langfristig völlig neue Perspektiven für die regenerative Medizin erschließen“, erklärt Prof. Dr. Thomas Scheibel (Lehrstuhl für Biomaterialien, Universität Bayreuth). „Es wäre beispielsweise möglich, Zellstrukturen zu züchten, die funktionsunfähiges Herzmuskelgewebe ersetzen. Und auch im Hinblick auf die Reparatur zerstörter Nervenbahnen oder Hautpartien zeichnen sich hochinteressante Möglichkeiten ab, die wir in unseren Forschungsarbeiten zur Biofabrikation weiter ausloten wollen.“

Prof. Dr. Jürgen Groll (Lehrstuhl für Funktionswerkstoffe der Medizin und der Zahnheilkunde, Universität Würzburg) ergänzt: „Die Biofabrikation braucht dringend neue Biotinten mit variablen Eigenschaften, um funktionale Gewebestrukturen züchten zu können. Mit dem neuen 3D-Druckverfahren auf der Basis von Spinnenseide konnten wir das Forschungsfeld um eine vielversprechende Möglichkeit erweitern.“

Ein Baustein für das neue Bayerische Polymerinstitut

Die beiden Wissenschaftler sehen in ihren künftigen Forschungsarbeiten zur Biofabrikation einen vielversprechenden Baustein des künftigen Bayerischen Polymerinstituts (BPI), das auf engen Kooperationen zwischen den Universitäten Bayreuth, Erlangen-Nürnberg und Würzburg beruht und von der Bayerischen Staatsregierung im Rahmen ihres Nordbayern-Plans finanziert wird. Die jetzt in der „Angewandten Chemie“ publizierten Ergebnisse wurden von der Deutschen Forschungsgemeinschaft (DFG) sowie aus dem siebten Rahmenprogramm der Europäischen Union gefördert.

Veröffentlichung:
Kristin Schacht, Tomasz Jüngst, Matthias Schweinlin, Andrea Ewald, Jürgen Groll, und Thomas Scheibel,
Dreidimensional gedruckte, zellbeladene Konstrukte aus Spinnenseide,
Angewandte Chemie (2015), doi: 10.1002/ange.201409846

Ansprechpartner:
Prof. Dr. Thomas Scheibel
Universität Bayreuth
Lehrstuhl für Biomaterialien
D-95440 Bayreuth
Tel.: +49 (0)921 / 55-7360
E-Mail: thomas.scheibel@uni-bayreuth.de

Über:

Universität Bayreuth Forschung
Herr Christian Wißler
Universitätsstraße 30 / ZUV
95447 Bayreuth
Deutschland

fon ..: (+49) 0921 / 55-5356
web ..: http://www.uni-bayreuth.de
email : mediendienst-forschung@uni-bayreuth.de

Kurzporträt der Universität Bayreuth

Die Universität Bayreuth ist eine junge, forschungsorientierte Campus-Universität. Gründungsauftrag der 1975 eröffneten Universität ist die Förderung von interdisziplinärer Forschung und Lehre sowie die Entwicklung von Profil bildenden und Fächer übergreifenden Schwerpunkten. Die Forschungsprogramme und Studienangebote decken die Natur- und Ingenieurwissenschaften, die Rechts- und Wirtschaftswissenschaften sowie die Sprach-, Literatur und Kulturwissenschaften ab und werden beständig weiterentwickelt.
Gute Betreuungsverhältnisse, hohe Leistungsstandards, Fächer übergreifende Kooperationen und wissenschaftliche Exzellenz führen regelmäßig zu Spitzenplatzierungen in Rankings. Die Universität Bayreuth belegt 2014 im weltweiten Times Higher Education (THE)-Ranking ,100 under 50′ als eine von insgesamt sechs vertretenen deutschen Hochschulen eine Top-Platzierung.
Seit Jahren nehmen die Afrikastudien der Universität Bayreuth eine internationale Spitzenposition ein; die Bayreuther Internationale Graduiertenschule für Afrikastudien (BIGSAS) ist Teil der Exzellenzinitiative des Bundes und der Länder. Die Hochdruck- und Hochtemperaturforschung innerhalb des Bayerischen Geoinstituts genießt ebenfalls ein weltweit hohes Renommee. Die Polymerforschung ist Spitzenreiter im Förderranking der Deutschen Forschungsgemeinschaft (DFG). Die Universität Bayreuth verfügt über ein dichtes Netz strategisch ausgewählter, internationaler Hochschulpartnerschaften.
Derzeit sind an der Universität Bayreuth rund 13.000 Studierende in 135 verschiedenen Studiengängen an sechs Fakultäten immatrikuliert. Mit ca. 1.200 wissenschaftlichen Beschäftigten, davon 224 Professorinnen und Professoren, und rund 900 nichtwissenschaftlichen Mitarbeiterinnen und Mitarbeitern ist die Universität Bayreuth der größte Arbeitgeber der Region.

Pressekontakt:

LepplePress – Agentur für Öffentlichkeitsarbeit
Herr Joachim Lepple
Weissdornweg 24
85757 Karlsfeld

fon ..: +49 (o) 8131 505010
web ..: http://www.LepplePress.de
email : LepplePress@LepplePress.de

Lesen Sie auch

Wichtig x